

Module specification

When printed this becomes an uncontrolled document. Please access the Module Directory for the most up to date version by clicking on the following link: <u>Module directory</u>

Refer to the module guidance notes for completion of each section of the specification.

Module code	BUS7B41
Module title	Business Analytics for Project Management
Level	7
Credit value	15
Faculty	FSLS
Module Leader	Dr Ben Binsardi
HECoS Code	100812
Cost Code	GABP

Programmes in which module to be offered

Programme title	Is the module core or option for this	
	programme	
MBA Project Management	Core	

Pre-requisites

A first degree and appropriate work experience.

Breakdown of module hours

Learning and teaching hours	15 hrs
Placement tutor support	0 hrs
Supervised learning e.g. practical classes, workshops	0 hrs
Project supervision (level 6 projects and dissertation modules only)	0 hrs
Total active learning and teaching hours	15 hrs
Placement / work based learning	0 hrs
Guided independent study	135hrs
Module duration (total hours)	150 hrs

For office use only	
Initial approval date	08/09/2021
With effect from date	08/09/2021
Date and details of	
revision	
Version number	1

Module aims

This module aims to develop students' understanding of various numerical methods for forecasting, in particular time-series methods that have wide applications in project management. It also explores the aspects of risk and uncertainty in project management, which are central to forecasting and prediction. This module employs the SPSS software package for implementing forecasting methods (free software downloads available to students).

Module Learning Outcomes - at the end of this module, students will be able to:

1	Provide a critical insight into various numerical methods for forecasting that have wide applications in project management.		
2	Explores the aspects of risk and uncertainty in project management, which are central to forecasting and prediction In project management.		
3	Identify appropriate techniques to implement forecasting methods employing the SPSS software package.		
4	Critically evaluate several measures of prediction accuracy of a forecasting method in project management.		

Assessment

Indicative Assessment Tasks:

This section outlines the type of assessment task the student will be expected to complete as part of the module. More details will be made available in the relevant academic year module handbook.

Assignment 1 Report – Students will evaluate the use of the following numerical forecasting methods in a project management context: Moving average, exponential smoothing, trend forecasting. Students must apply findings in a practical context using a project of your choice and address how the data can be utilised to predict future trends. (1000 words)

Assignment 2: Essay: With specific reference to a project of students choice, critically evaluate the forecasting risks and uncertainties facing project managers and apply it to your chosen example. (2000 words)

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)
1	1, 3	Written Assignment	30
2	2, 4	Written Assignment	70

Derogations

None

Learning and Teaching Strategies

The learning and teaching strategy will consist of formal lectures to present theory, principles and practices which will form the foundation of the learning outcomes. Students will be encouraged to interact and contribute as a means of developing critical skills. Tutorials will be activity based using real world case studies and live examples to apply the theory into practice and develop their decision making and evaluating skills. In addition, students will be encouraged to undertake self-directed study and further research on selected topics to acquire additional perspectives which will provide them with a deeper understanding of the topics covered.

Indicative Syllabus Outline

- Forecasting using the SPSS software package
- Basic forecasting methods
- Time-trend forecasting methods 1
- Time-trend forecasting methods 2
- Econometric forecasting methods 1
- Econometric forecasting methods 2
- Measuring forecasting performance

Indicative Bibliography:

Please note the essential reads and other indicative reading are subject to annual review and update.

Essential Reads

Gujarati, D. (2016). Econometrics by Example, New York, USA, Publisher: Palgrave.

Other indicative reading

Makridakis, S. G., Wheelwright, S. C. and Hyndman, R. J. (1988). *Forecasting: Methods and Applications*, Hoboken, USA, Publisher: John Wiley & Sons.

Websites:

https://www.macmillanihe.com/companion/Gujarati-Econometrics-By-Example/https://onlinelibrary.wiley.com/doi/book/10.1002/9780470996430

Employability skills - the Glyndŵr Graduate

Each module and programme is designed to cover core Glyndŵr Graduate Attributes with the aim that each Graduate will leave Glyndŵr having achieved key employability skills as part of their study. The following attributes will be covered within this module either through the content or as part of the assessment. The programme is designed to cover all attributes and each module may cover different areas. Click here to read more about the Glyndwr Graduate attributes

Core Attributes

Engaged
Enterprising
Creative
Ethical

Key Attitudes

Commitment Curiosity Resilience Confidence Adaptability

Practical Skillsets

Digital Fluency Organisation Critical Thinking Communication